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Reminders on the existing dose calculation method in the Radiation Hardness Assurance (RHA) process

Axis 1: Studying the key parameters impact on the Ray-Tracing accuracy

AXxis 2: Investigating the limits of the Ray-Tracing

Recommendations and conclusion

Author: Kevin Lemiére et al. Radiation Hardness Assurance : J-2 2




C TPAD | &

MOtlvathn Cnes Tests&iaiilzjtlons / Y:
= Radiation effects simulation - Key step of the Radiation Hardness Assurance process o -

= Number of satellite launchings is increasing and accelerating = Increasing demand of radiation analysis

= Increasing use of COTS instead of Rad-Hard parts - Reduction of the design dose
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» Radiation effects simulation - Key step of the Radiation Hardness Assurance process

= Number of satellite launchings is increasing and accelerating - Increasing demand of radiation analysis

» |Increasing use of COTS instead of Rad-Hard parts > Reduction of the design dose

= The Ray-Tracing (used a lot) is very fast, but relies on strong hypotheses contrary to the Reverse Monte
Carlo (reference in the space industry)

= The space market is evolving, but the Ray-Tracing tool did not really evolve for 40 years

= Need to increase the accuracy and keep a low computation time

Main motivation: Survey of the key parameters and assumptions made in the Ray-Tracing
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= Two methods are used in the space industry to compute the dose inside a spacecratft:
— 1) Ray-Tracing (RT) = Sector analysis
— 2) Reverse Monte Carlo (RMC) = Particle-matter interactions

Dose depth-curve (aluminum shielding)
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= Two methods are used in the space industry to compute the dose inside a spacecratft:
— 1) Ray-Tracing (RT) = Sector analysis
— 2) Reverse Monte Carlo (RMC) = Particle-matter interactions

Dose depth-curve (aluminum shielding)
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Context: some reminders cnGg e

= Two methods are used in the space industry to compute the dose inside a spacecratft:
— 1) Ray-Tracing (RT) = Sector analysis
— 2) Reverse Monte Carlo (RMC) = Particle-matter interactions

Geometrica Phsical procss + Energy loss calculated all along the real particle path
oundary ionization
:}\\ e Pr_imaryfarticle ’
e v |+ Creation and tracking of secondary particles
A = Step 1 agreh 3' ez
A2 + Considers realistically the materials
Vacuum Material e .
+ Better accuracy on the deposited dose level
Electrons scattering in a Particle-matter
sphere interactions at each step
E
TID = —
m

Total dose computation
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3D RADIATION SIMULATION

= Studying the key parameters of RT = Investigate the Ray-Tracing limits
— Sectoring resolution — Aluminum equivalent thickness
— Model orientation — Material distribution
— Geometric effects
Survey of the
Ray-Tracing
method

= Suggesting recommendations
= Proposing ways of improvement for future works
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Mission: GEO, 35784km, 15 years Inutdata
= Worst-case for Ray-Tracing P |

' ' i » Detectors randomly placed in each unit
» Combinations of units and satellite platforms
G1 G2 JASON

» Total: 5800 detectors

Unit A Umt B Unit C ICARE

-

: . , , Need for a statistical analysis
Geometric models: satellite platforms (G1, G2, JASON) and different units

From R. Benacquista et al., “Comparison of Ray-Tracing and Reverse Monte-Carlo Methods:
Application to GEO orbit,” in 2019 19th European Conference on Radiation and Its Effects on
Components and Systems (RADECS), Montpellier, France: IEEE, Sep. 2019, pp. 1-5.
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Axis 1: Study of the key parameters of RT
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Statistical analysis
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Dose [rad]

Error from reference [%]

Axis 1: Study of the key parameters of RT cneg “en
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» Variation of the dose with the sectoring resolution = Key parameter
» Reference dose: RT computation with 100 x 200 sectors

» Minimum: 30 x 60 sectors, as recommended by ECSS (European standards)
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» Error : relative difference between the reference dose and the calculated one
» 1 black curve = 1 detector
» 5800 detectors on the same graph

» Pair of colored curves: 1st and 99th percentiles = Dose error interval

- » Two configurations: without and with rotation of the geometric model

100
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Axis 1: Study of the key parameters of RT cneg e
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/7 number of sectors # /7 RT accuracy significantly

30x60 sectors recommended by ECSS - Sufficient

Rotation increases the accuracy by lowering the dose error by a factor = 2

Significant impact of the rotation,
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= Improving the consideration of the material:
— Estimation of the error induced by the density ratio:

Mission: GEO, 35784km, 15 years

110
——Copper

§ 90 —Aluminum oxide
= —Tantalum
> —Silicon
é 70 ——~Carbon
5 == dose —Polypropylene
= 50 —Ilron
]
o Plastic
o 30 —Tungsten
= ﬂ-’\f
S 10 |
oy
GJ ————————————————
|
% -10
g l
@ -30
>
&
— -50
g - dose

-70

1E-03 1E-02 1E-01 1E+00 1E+01

Shielding thickness (g/cm?)

Variation of the dose according to the shielding thickness.
Reference material: aluminum
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= Improving the consideration of the material:
— Estimation of the error induced by the density ratio:

Mission: GEO, 35784km, 15 years
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= Error = relative difference between dose computed for

fmw\\ aluminum shielding and another shielding material
N

................ = Dose variation: [-70% ; +100%] - Non negligible bias

——Tungsten
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<0 _ dose = Provides an idea of the error induced by the aluminum
70 equivalent thickness = Bias in the RT calculation
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Variation of the dose according to the shielding thickness.
Reference material: aluminum
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Axis 2: Investigate the Ray-Tracing limits cnes et

= Improving the consideration of the material
» New approach: use of multiple dose-depth curves (instead of only aluminum)

» Proposed test: equivalent aluminum thickness that brings the same dose behind the true material
thickness shielding
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= Works well on simple geometries (concentric spheres, electrical
W component package) but less on more realistic ones (unit, satellite
platform)
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- dose = The material approximation induces some bias but other ones seem
7 to be not negligible: geometric effects
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Variation of the dose according to the shielding thickness.
Reference material: aluminum

Mission: GEO, 35784km, 15 years
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= Geometric effects:
— Distribution of the materials along the path of the particles
— Spacing between shielding elements
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AXis 2: Investigate the Ray-Tracing limits cnes

= Geometric effects: 4
— Distribution of the materials along the path of the particles
— Spacing between shielding elements

______________________________

Concentric spheres (GEO)
- Same total thickness

Case 1 Case 2
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= Geometric effects:

— Distribution of the materials along the path of the particles
— Spacing between shielding elements

______________________________

Concentric spheres (GEO)
- Same total thickness

Case 1

Case 2

Results
" wethod | camer | cae2
Ray-Tracing 325krad
Reverse Monte Carlo 336krad (+3,5%) 383krad (+18%)

= The Ray-Tracing is not able to take into account the material sequence

= Non negligible bias even for a very simple case
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AXxis 2: Investigate the Ray-Tracing limits cnag b

= Geometric effects:
— Distribution of the materials along the path of the particles
— Spacing between shielding elements

= Sequence of shielding materials: Void

— Silicon, iron and aluminum shells
— Separated with void spacing
Fe

Al shells

Author: Kevin Lemiére et al. Radiation Hardness Assurance : J-2 19




¢ TR

AXxis 2: Investigate the Ray-Tracing limits o

= Geometric effects:
— Distribution of the materials along the path of the particles
— Spacing between shielding elements

L . Void
= Sequence of shielding materials: o
— Silicon, iron and aluminum shells
— Separated with void spacing
Fe
Al shells
Results
TR . Factor 2 between the RT and RMC
RT 1378 - = Non negligible bias induced by the spacing
RMC 698 -49 — Scattering of the particles
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Discussion and Conclusion CnBg T

= Competition between different factors in the Ray-Tracing calculation
» Quantifying each of them independently is a harsh task - Act at the same time

Straight line path

Spacing between
shielding parts

Sectoring
resolution
Ray-Tracing
Key parameters &
assumptions

Materials
distribution

Model rotation

Material
consideration
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Discussion and Conclusion .

= Axis 1: Studying the key parameters impact on the Ray-Tracing accuracy
>
» Confirm the minimum number of sectors recommended by ECSS
» Apply a random rotation seems to increase the Ray-Tracing accuracy

Straight line path

Axis 1
Spacing between Sectoring
shielding parts resolution

Ray-Tracing
Key parameters &
assumptions

Materials
distribution

Model rotation

Material
consideration

Author: Kevin Lemiére et al. Radiation Hardness Assurance : J-2

22



C_TRAD,

Discussion and Conclusion cneg R

= AXis 2: Investigate the Ray-Tracing limits
>

» Strong impact of the geometric effects on a electron-dominated orbits due to
scattering effects

AXis 2

Straight line path Axis 1

Spacing between
shielding parts

Sectoring
resolution
Ray-Tracing
Key parameters &
assumptions

Materials
distribution

Model rotation

Material
consideration
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Recommendations and Future Prospective ChBg ner -/ /vaé

= Recommendations or suggestions
» Avoid Ray-Tracing on electron-dominated orbits as much as possible - Confirms ECSS suggestion
» Use RMC as a validation tool on most critical cases - Complementary simulations

= Future prospective
» Investigate solutions to consider both material and geometric effects at the same time
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