

J-2: Investigation on the limits of the Ray-Tracing method applied on dose analysis for Radiation Hardness Assurance

K. Lemière¹, R. Benacquista¹, A. Varotsou¹, J. Guillermin¹, M. Ruffenach², M. Rizzo², R. Ecoffet²

¹TRAD Tests & Radiations, 907 L'Occitane, 31670 Labège, France

²Centre National d'Etudes Spatiales, 18 Avenue Edouard Belin, 31401 Toulouse, France

Outline

- Reminders on the existing dose calculation method in the Radiation Hardness Assurance (RHA) process
- Axis 1: Studying the key parameters impact on the Ray-Tracing accuracy
- Axis 2: Investigating the limits of the Ray-Tracing
- Recommendations and conclusion

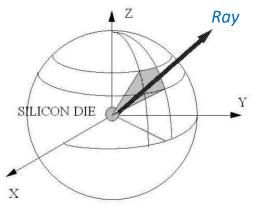
Motivation

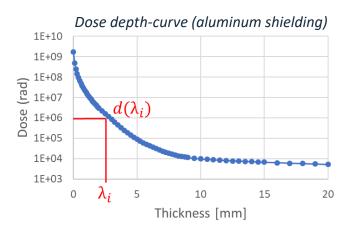
- Radiation effects simulation → Key step of the Radiation Hardness Assurance process
- Number of satellite launchings is increasing and accelerating → Increasing demand of radiation analysis
- Increasing use of COTS instead of Rad-Hard parts → Reduction of the design dose

Motivation

- Radiation effects simulation → Key step of the Radiation Hardness Assurance process
- Number of satellite launchings is increasing and accelerating → Increasing demand of radiation analysis
- Increasing use of COTS instead of Rad-Hard parts → Reduction of the design dose
- The Ray-Tracing (used a lot) is very fast, but relies on strong hypotheses contrary to the Reverse Monte Carlo (reference in the space industry)
- The space market is evolving, but the Ray-Tracing tool did not really evolve for 40 years
- Need to increase the accuracy and keep a low computation time

Main motivation: Survey of the key parameters and assumptions made in the Ray-Tracing


Context: some reminders



- Two methods are used in the space industry to compute the dose inside a spacecraft:
 - 1) Ray-Tracing (RT) = Sector analysis
 - 2) Reverse Monte Carlo (RMC) = Particle-matter interactions

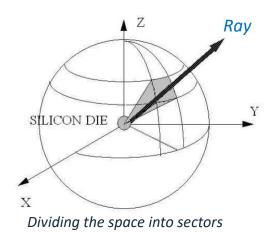
Dividing the space into sectors

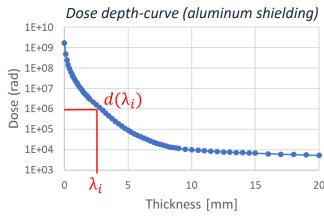
$$D = \sum_{i=1}^{N} \frac{d(\lambda_i)\Omega_i}{4\pi}$$

Total dose computation

$$\lambda_i = \frac{t_i}{\cos(\theta)} \frac{\rho_{Mi}}{\rho_{Alu}}$$

Equivalent aluminum thickness


Context: some reminders



- Two methods are used in the space industry to compute the dose inside a spacecraft:
 - 1) Ray-Tracing (RT) = Sector analysis
 - 2) Reverse Monte Carlo (RMC) = Particle-matter interactions

- + Fast computation time (<1s for 1 detector)
- Generally overestimates the dose
- Straight line propagation of particles

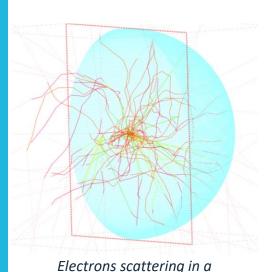
Density ratio

Equivalent aluminum thickness

$$D = \sum_{i=1}^{N} \frac{d(\lambda_i)\Omega_i}{4\pi}$$

Total dose computation

Equivalent aluminum thickness: material density ratio


Context: some reminders

- Two methods are used in the space industry to compute the dose inside a spacecraft:
 - 1) Ray-Tracing (RT) = Sector analysis
 - 2) Reverse Monte Carlo (RMC) = Particle-matter interactions

sphere

Geometrical boundary (ionization)

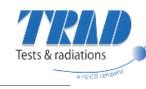
Primary particle $e_1^-, \varepsilon_1, \vec{v}_1$ Secondary particle e_2^- Step 1

Vacuum Material

Physical process (ionization)

Secondary particle e_2^- Step 2

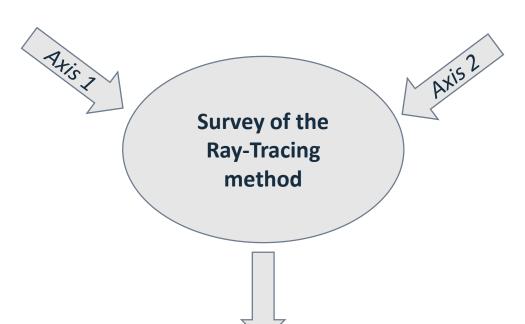
Particle-matter interactions at each step


- + Energy loss calculated all along the real particle path
- + Creation and tracking of secondary particles
- + Considers realistically the materials
- + Better accuracy on the deposited dose level
- Slower than Ray-Tracing

 $TID = \frac{E}{m}$

Total dose computation

Objectives



- Studying the key parameters of RT
 - Sectoring resolution
 - Model orientation

- Investigate the Ray-Tracing limits
 - Aluminum equivalent thickness
 - Material distribution
 - Geometric effects

Suggesting recommendations

Proposing ways of improvement for future works

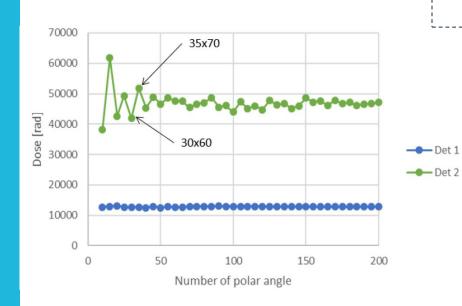
Mission: GEO, 35784km, 15 years = Worst-case for Ray-Tracing

Input data

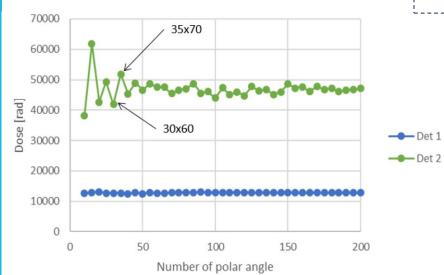
Geometric models: satellite platforms (G1, G2, JASON) and different units

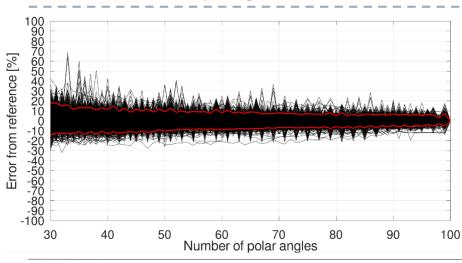
From R. Benacquista *et al.*, "Comparison of Ray-Tracing and Reverse Monte-Carlo Methods: Application to GEO orbit," in *2019 19th European Conference on Radiation and Its Effects on Components and Systems (RADECS)*, Montpellier, France: IEEE, Sep. 2019, pp. 1–5.

- Detectors randomly placed in each unit
- Combinations of units and satellite platforms
- Total: 5800 detectors


Need for a statistical analysis

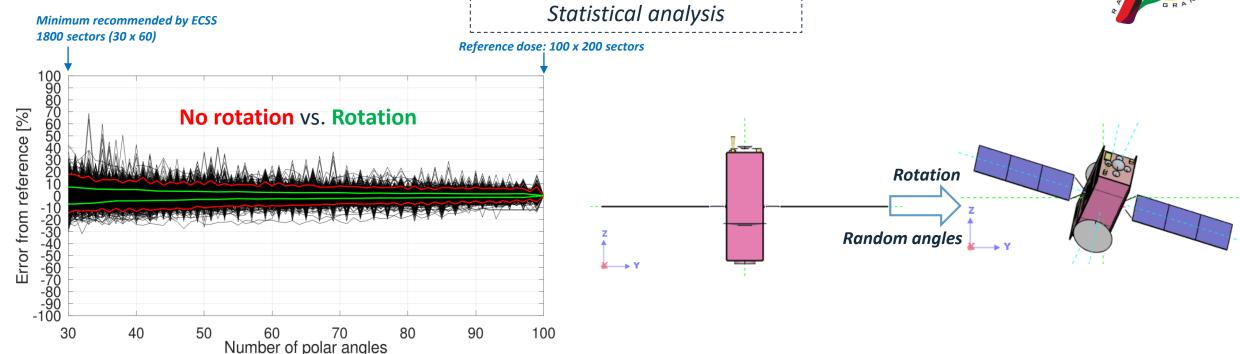
Statistical analysis


- > Variation of the dose with the **sectoring resolution = Key parameter**
- > Reference dose: RT computation with 100 x 200 sectors
- > Minimum: 30 x 60 sectors, as recommended by ECSS (European standards)



Statistical analysis

- > Variation of the dose with the **sectoring resolution = Key parameter**
- > Reference dose: RT computation with 100 x 200 sectors
- Minimum: 30 x 60 sectors, as recommended by ECSS (European standards)

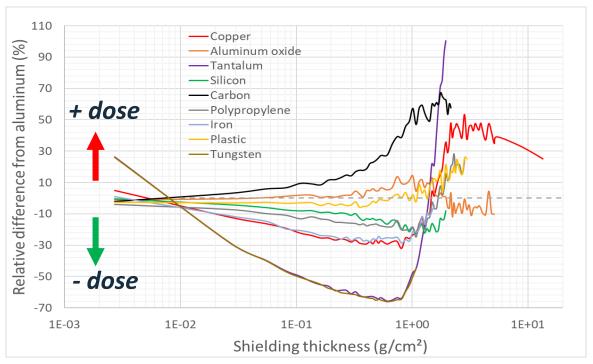


- > Error: relative difference between the reference dose and the calculated one
- 1 black curve = 1 detector
- 5800 detectors on the same graph
- > Pair of colored curves: 1st and 99th percentiles = Dose error interval
- Two configurations: without and with rotation of the geometric model

- number of sectors ≠ ✓ RT accuracy significantly
- 30x60 sectors recommended by ECSS → Sufficient
- Rotation increases the accuracy by lowering the dose error by a factor ≈ 2

Observations & Results

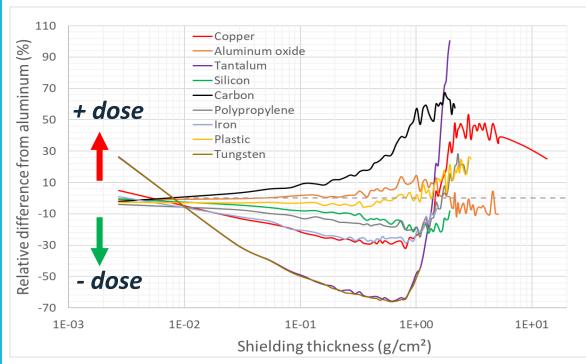
Significant impact of the rotation, contrary to the sectoring resolution



- Improving the consideration of the material:
 - Estimation of the error induced by the density ratio:

Variation of the dose according to the shielding thickness.

Reference material: aluminum



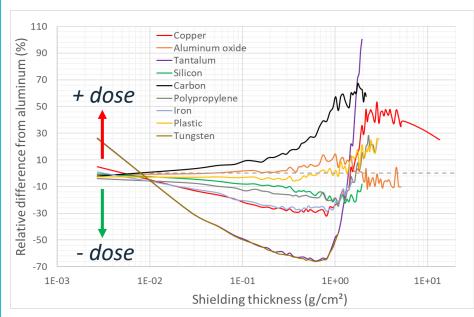
14

- Improving the consideration of the material:
 - Estimation of the error induced by the density ratio:

Variation of the dose according to the shielding thickness.

Reference material: aluminum

- Error = relative difference between dose computed for aluminum shielding and another shielding material
- Dose variation: [-70%; +100%] → Non negligible bias
- Provides an idea of the error induced by the aluminum equivalent thickness → Bias in the RT calculation



15

- Improving the consideration of the material
 - > New approach: use of multiple dose-depth curves (instead of only aluminum)
 - Proposed test: equivalent aluminum thickness that brings the same dose behind the true material thickness shielding

Variation of the dose according to the shielding thickness.

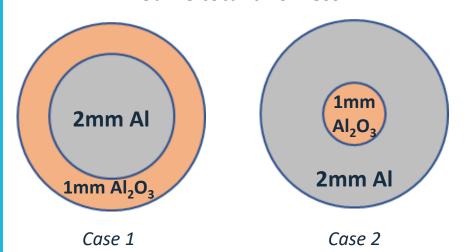
Reference material: aluminum

Mission: GEO, 35784km, 15 years

- Works well on simple geometries (concentric spheres, electrical component package) but less on more realistic ones (unit, satellite platform)
- The material approximation induces some bias but other ones seem to be not negligible: geometric effects

Geometric effects:

- Distribution of the materials along the path of the particles
- Spacing between shielding elements

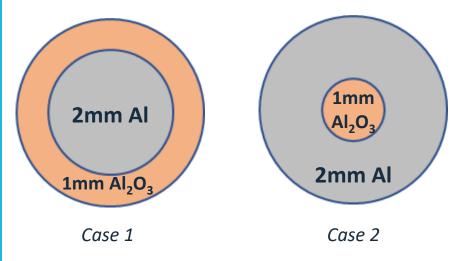


- Geometric effects:
 - Distribution of the materials along the path of the particles
 - Spacing between shielding elements

Case study

Concentric spheres (GEO)

→ Same total thickness


18

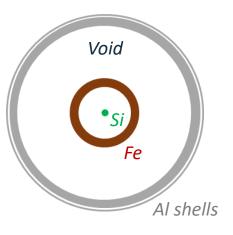
- Geometric effects:
 - Distribution of the materials along the path of the particles
 - Spacing between shielding elements

Case study

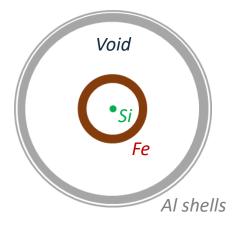
Concentric spheres (GEO)

→ Same total thickness

Method	Case 1	Case2
Ray-Tracing	325krad	
Reverse Monte Carlo	336krad (+3,5%)	383krad (+18%)


- The Ray-Tracing is not able to take into account the material sequence
- Non negligible bias even for a very simple case

- Geometric effects:
 - Distribution of the materials along the path of the particles
 - Spacing between shielding elements
- Sequence of shielding materials:
 - Silicon, iron and aluminum shells
 - Separated with void spacing



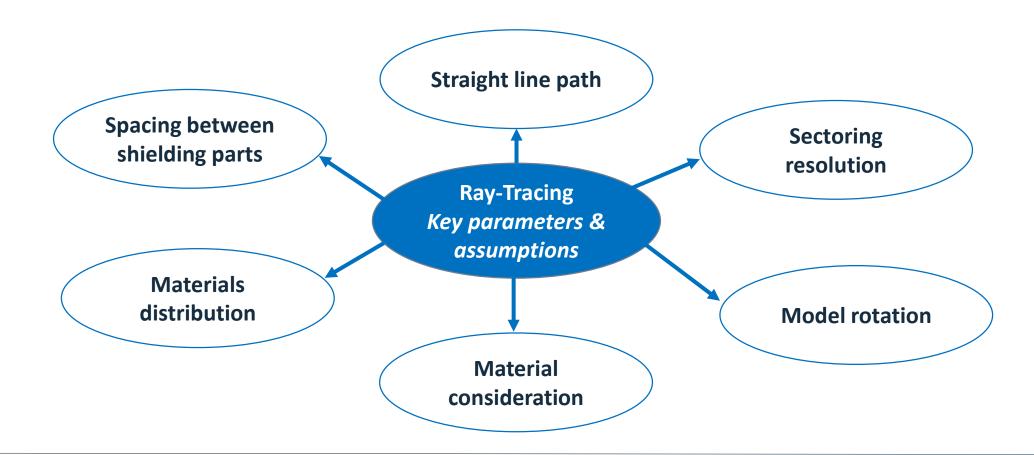
20

- Geometric effects:
 - Distribution of the materials along the path of the particles
 - Spacing between shielding elements
- Sequence of shielding materials:
 - Silicon, iron and aluminum shells
 - Separated with void spacing

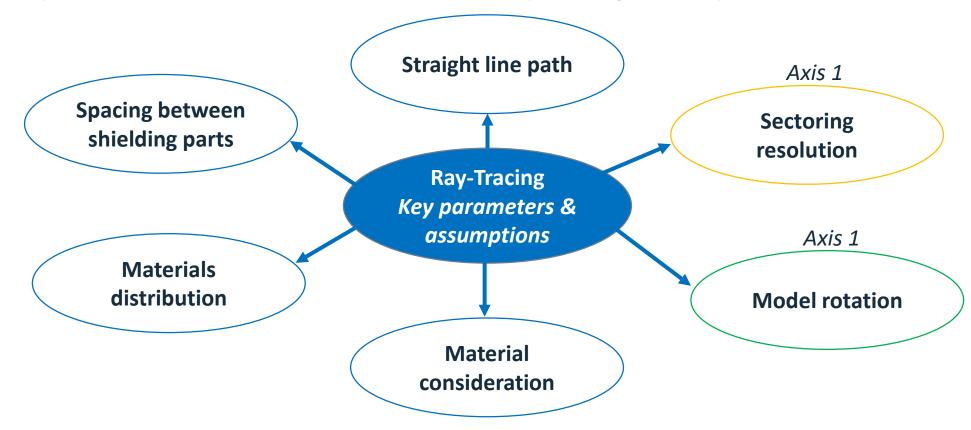
Results

	Dose (krad)	RT error (%)
RT	1378	-
RMC	698	-49

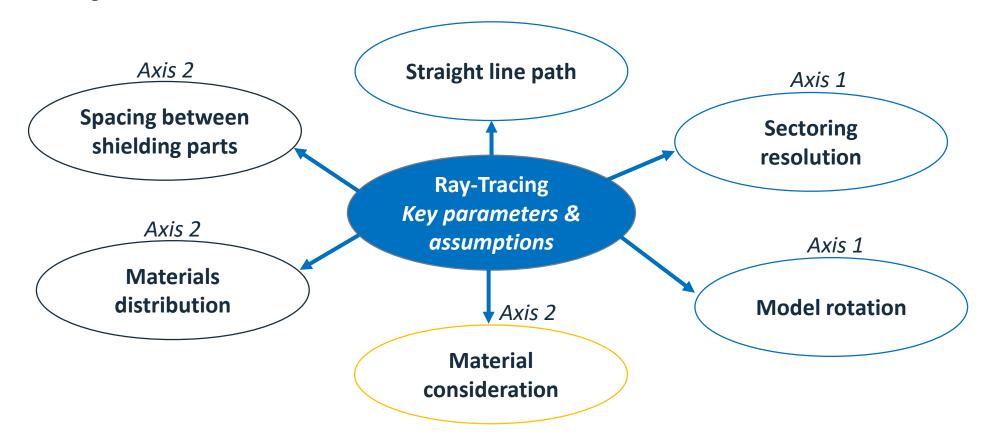
- Factor 2 between the RT and RMC
- Non negligible bias induced by the spacing
 - Scattering of the particles


Discussion and Conclusion

- Competition between different factors in the Ray-Tracing calculation
 - ➤ Quantifying each of them independently is a harsh task → Act at the same time


Discussion and Conclusion

- Axis 1: Studying the key parameters impact on the Ray-Tracing accuracy
 - ➤ Increase the number of sectors is not very efficient to reduce dose variations
 - > Confirm the minimum number of sectors recommended by ECSS
 - > Apply a random rotation seems to increase the Ray-Tracing accuracy


Discussion and Conclusion

- Axis 2: Investigate the Ray-Tracing limits
 - ➤ Highlight the limits of the ratio density for the material consideration
 - > Strong impact of the geometric effects on a electron-dominated orbits due to scattering effects

Recommendations and Future Prospective

- Recommendations or suggestions
 - ➤ Avoid Ray-Tracing on electron-dominated orbits as much as possible → Confirms ECSS suggestion
 - ➤ Use RMC as a validation tool on most critical cases → Complementary simulations
- Future prospective
 - > Investigate solutions to consider both material and geometric effects at the same time

Acknowledgements & Contact details

- Supporting by CNES
 - CNES contract number: Research & Technology, DCT/AQ/EC-2021-0004825, April 2021
- TRAD software development team (OMERE and FASTRAD)

- Contact details
 - Name: Kevin Lemière, Ph. D.
 - Affiliation: TRAD Tests & Radiations (France)
 - Email: <u>kevin.lemiere@trad.fr</u>
 - Phone: +33561009560

Thank you for your attention!