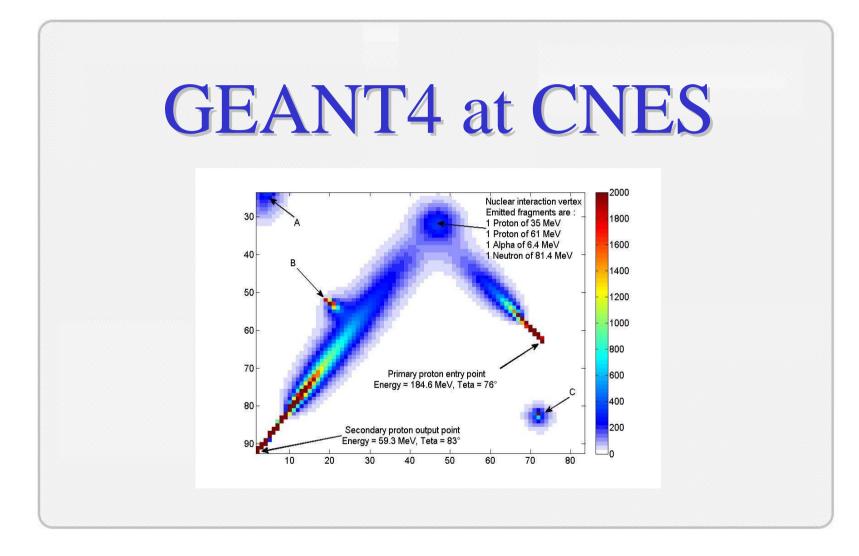


FASTRAD and Geant4-related activities at TRAD


Summary

• Geant4-related CNES actions

• FASTRAD

- Brief description
- Geant4 Interface
- GDML Geometry Export
- Particles Tracking Viewer
- GRAS Interface (in progress)
- Other TRAD Geant4-related activity – Effect Study on a PMOS dosimeter

Geant4 Workshop, Madrid May 21st, 2009

Guy ROLLAND. CNES Toulouse DCT/AQ/EC.

SUMMARY of the Geant4-Related CNES Actions :

• R&D Contracts with TRAD $(2003 \rightarrow 2009)$:

- Feasibility, Implementation in FASTRAD and Optimisation of Forward and Reverse Monte Carlo Methods for Ionising Dose Calculations based on G4.
- **4** G4 Simulations for the Design and the Validation of a Proton Beam Degrader Facility.

• R&D Contracts with ONERA / DESP $(2003 \rightarrow 2009)$:

- Development of a G4 based Nuclear Reaction Data Base used in the NEMO / OMERE code (for NIEL calculations) and in the STARDUST code (Simulation of Particles Tracks in Detectors).
- 4 G4 Simulation of the Behaviour and Sensitivity of Particle Detectors (ICARE-NG / CARMEN).
- ↓ Development of G4 Pre-processors and Post-processors based on Root.
- **4** G4 based Displacement Damage Studies in Semiconductors (current).

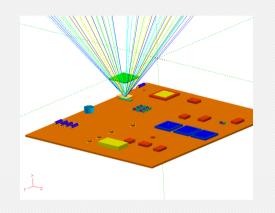
• CNES Specific Use $(2004 \rightarrow 2009)$:

- 4 Calculation of the Ionizing Absorbed Dose by a Comet (G4 Feasibility Study).
- **4** G4 Calculation of the Radiation Environment Spectra at the COROT Satellite Focal Plane.
- **4** Use of some G4 X section models in the STARDUST Code.

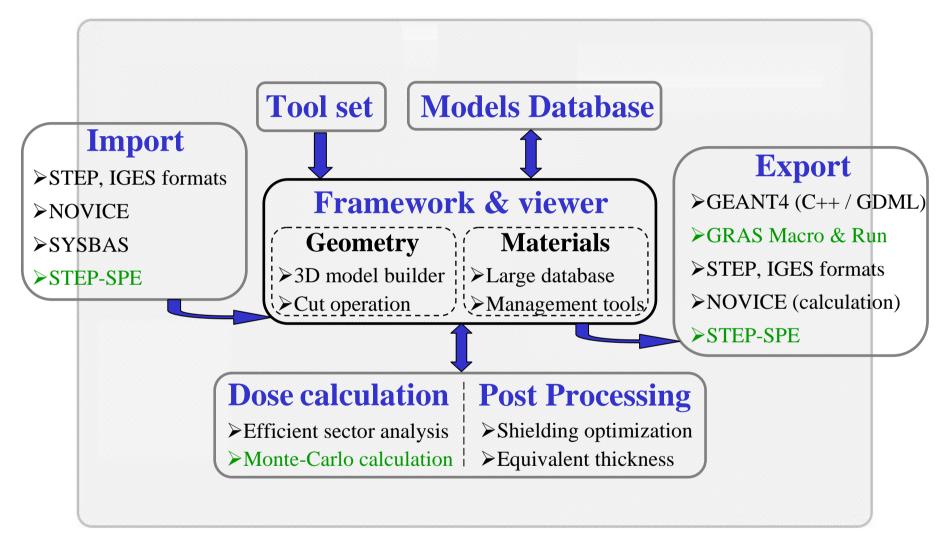
• Perspectives :

These actions are re-evaluated each year by the CNES R&D arbitration committees.

Geant4 Workshop, Madrid May 21st, 2009


Guy ROLLAND. CNES Toulouse DCT/AQ/EC.

Brief description - Functionalities


- Radiation CAD (Computer-Aided Design) Tool
 - 3D Geometry modeler, materials, sensitive detectors
 - Design assistance tools.
 - Import 3D models : STEP, IGES
- Radiation Transport Tools
 - Ray-tracing method.
 - Monte-Carlo calculation.
 - Post processing
- CAD Interface for others software
 - NOVICE import/export
 - GEANT4 export

Geant4 Workshop, Madrid May 21st, 2009

Brief description - FASTRAD Application

Geant4 Workshop, Madrid May 21st, 2009

Geant4 interface - Description

Creation of Geant4 type files based on geometrical models designed with FASTRAD through 3 dialog boxes.

Interface provides several important tools :

- Detailed source definition (using GPS commands)
- 3 analysis modules
- 16 different Physics Lists

Geant4 interface - Geant4 Files

FASTRAD provides ready to compile Geant4 files:

- Header files (.hh)
- Source files (.cc)
- Main file
- Macro files, allowing changes without rebuilding Geant4 executable thanks to Geant4 Messengers:
 - o Detector type
 - o GPS commands (particles type, source modification)
 - o Visualisation definition (choice of visual display, creation of visualisation, visualisation's option)

Geant4 interface - Post Processing

3 different types of post processing :

- <u>Received dose</u> by primary particles and secondary electrons and gammas + <u>sampling of deposited energy</u>
- <u>Sampling of LET spectrum</u> for primary particles
- <u>Sampling of incident energy</u> for primary and secondary particles on the detector + <u>details for each hitting particle</u> : # event, particle type, incident energy, deposited energy, momentum and origin volume (only for secondary particles)

GDML Geometry Export

Full geometry translation into GDML format.

- Every shapes are taken into account :
 - Simple solids,
 - Hollowed shapes based on simple solids,
 - Tesselated shapes (STEP/CAD format).
- Compatible with new Geant4 version
- Project funded by ESA under REAT2-MS contract

Particles Tracking Viewer

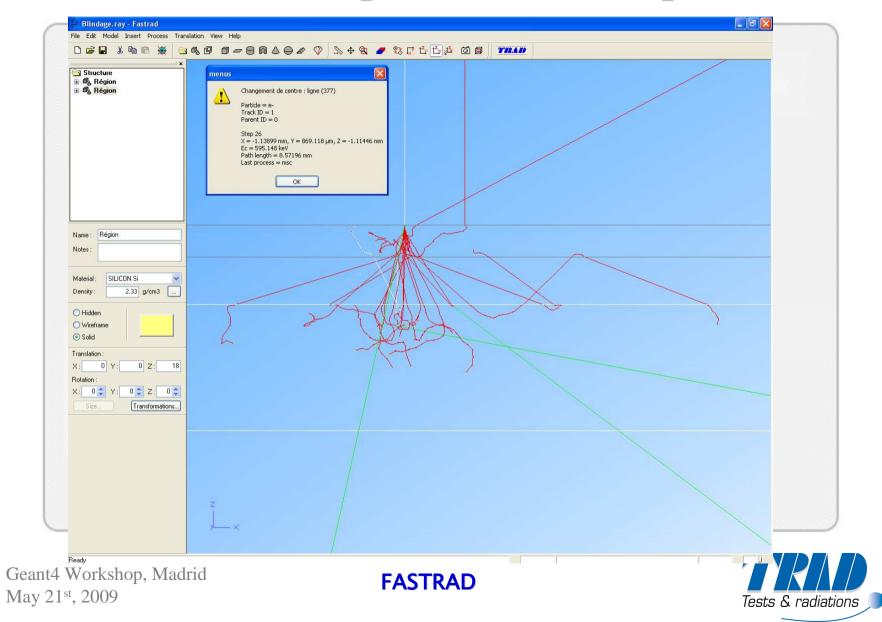
Trajectories Viewer from Geant4 tracking verbose:

Trajectory visualisation of all particles inside your geometry •

C12[0.0]

proton 00001

	100001	100386		
	1980.0 km 100.0 GeV	3.85 cm 4.32 MeV		
• Information on each interaction :	0 eV	0 eV		
	1	proton 100384		
– kinetic energy	ł	2.4 cm		
81		270.0 keV 0 eV		
– Position				
	Į.	pi- 100383	mu- 100426	anti_nu_e 100622
	i i	790.0 m	12.1 km	1.52e+004 km
– path length	Į.	9.16 GeV 9.12 GeV	6.83 GeV 5.59 GeV	2.7 GeV 2.7 GeV
		4	47	
 interaction process 	ł	÷.	4	nu_mu 100621
1	Ļ	Ţ	Į.	1.52e+004 km 680.0 MeV
– ID		Ŷ	Ŷ	680.0 MeV
	l l	Į.	 anti_nu_mu	
	İ.	Ť.	100425	
		ų.	1.52e+004 km 2.33 GeV	
		Î	2.33 GeV	
		1		


Creation of a file describing the particle cascade. •

Geant4 Workshop, Madrid May 21st, 2009

FASTRAD

Particles Tracking Viewer - Example

GRAS Interface (Work in progress)

Project funded by ESA under RRMC contract

Sequential setting of a GRAS project : The user has to fill in several forms in order to define step by step the GRAS run.

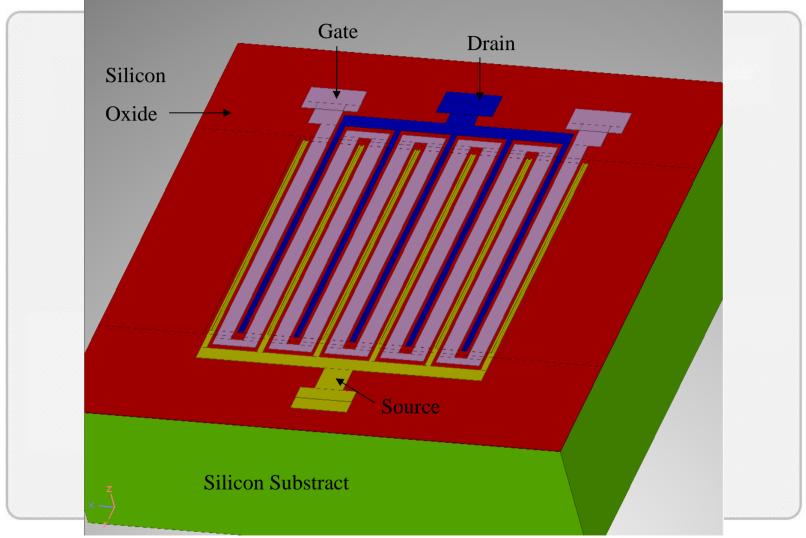
- Initialisation and geometry input
- The physics lists and cut-off
- The incident particle definition (positional, directional, spectral distributions)
- The required analysis modules with the associated histogram schemes
- The verbosity

Geant4 Workshop, Madrid May 21st, 2009

GRAS Interface (Work in progress)

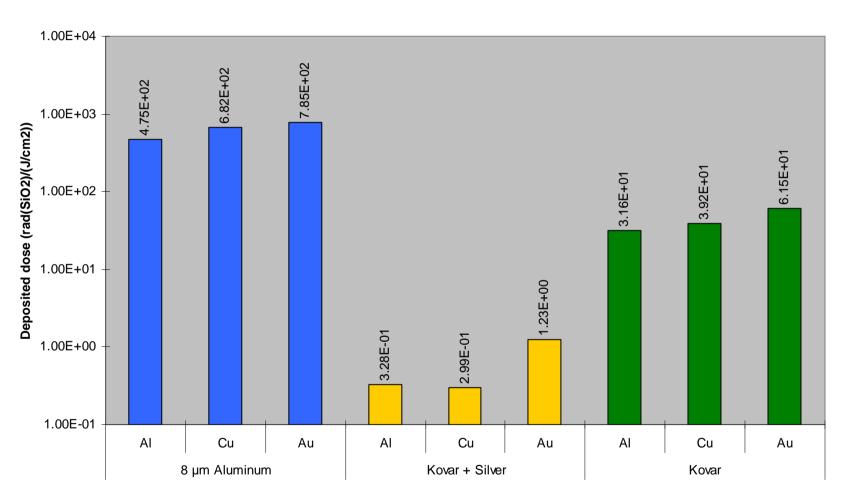
CDAS - Dhuning Dr	<i></i>					GR	AS : Physics Options		
GRAS : Physics De	mittion						Adjoint Physics Control		
Physics List	List : Other Ph	ueice Liet		Opti	ions		Adjoint Bremsstralhung :	💽 On	Oof
Predefined Pysics I							Adjoint Multiple Scattering :	On	💽 Of
	Elastic Process				ktra Component		Adjoint Compton Scattering :	On	📀 Of
em standard 💌	QElastic 💌	binary hp 💌	Abrasic	on 💌 r	raddecay 💌		Adjoint Photo Electric Effect :	💽 On	Oof
Cuts And Limits				RMC			Annuler		Ok
Set Gamma Cut :				Minimum En	arqu				
Set Electron Cut :			All Cut		KeV 🗸				
Set Positron Cut :		nm 🚩			Kev V				
Activate Step Limit				Maximum Er	hergy				
Set Lowest Energy :	:	KeV 😽			KeV 💌				
	0.5	Ang 🔽							

Geant4 Workshop, Madrid May 21st, 2009



Radiation effects on a PMOS dosimeter - Description

- Interest : DGA (french military Agency) funded study of microscopic effects inside the silicon and silicon dioxide layers explaining the dosimeter behaviour.
- Creation of a PMOS model with oxide sensitive layers of 0.1µm thickness using FASTRAD.
- Simulation of different particle sources corresponding to existing radiation facilities (Co60, X Rays, electrons beams with energy up to several MeV).



Radiation effects on a PMOS dosimeter - Model

Radiation effects on a PMOS dosimeter – Results example

Deposited dose in gate oxide depending on the grid metal and the shielding nature

Conclusion

- TRAD provides efficient tools for Geant4 with the FASTRAD application:
 - Geant4 Interface,
 - GDML Geometry Export,
 - Tracking Particle Viewer,
 - GRAS Interface (in progress).
- Current development of a Reverse Monte-Carlo simulation code based on Geant4 to calculate dose deposition.
- Contacts for further information:
 - <u>http://www.trad.fr</u> (company website)
 - <u>Fastrad@trad.fr</u> (software team)
 - <u>Pierre.Pourrouquet@trad.fr</u> (personal e-mail)

Geant4 Workshop, Madrid May 21st, 2009

