FASTRAD® Modules, discover our 3 available packages:

Bronze Package*

médaille-bronze

Radiation CAD interface & data-exchange

Bronze package represents the first step of your FASTRAD® experience. It is a simplified configuration, limited to creating and handling 3D radiation models, allowing to import and export entire STEP object characteristics.

A graphical user interface will allow you to create and handle geometries:

  • Insertion of simple shapes (box, slab, cylinder, cake, sphere, cone, triangular prism,elliptical cylinder and torus, extruded trapeze).advance-CAD-toolkit
  • Viewer 3D / 2D + objects handling (rotation, translation, etc. )
  • A material definition interface with a database
  • Cut operations on simple shapes
  • Print & copy view functions
  • Mass calculation
  • Material tool (visualization, replacement, list cleaner)
  • Detector handling tools
  • Keyword search engine
  • Measuring tool
  • Clipping plan

*Bronze package is not available in USA, China and Russia

Silver Package*

médaille-silver

 Ray tracing calculation + Bronze features

Silver service goes beyond as it allows to create solids using points in the 3D model and perform essential calculations: sector analysis (Minimum and Slant Ray tracing), equivalent thickness, ray view and shielding mapping.

Dose calculation by sector analysis on any Fastrad model containing simple shapes or tessellated volumes (coming from STEP or IGES format files).

Two calculation methods are proposed:

  • The slant one (associated with solid sphere Dose Depth Curve)
  • The ‘minimum path’ method (with a shell shpere Dose Depth Curve)

This interface is dedicated to the calculation of the Displacement Damage Equivalent Fluence (DDEF) and TID in sensitive areas.

6

*Silver package is not available in USA, China and Russia

Gold Package

médaille-gold

Scripting module & Monte Carlo calculations + Silver features + Bronze features

Gold service has newly integrated a script language allowing the user to interact with the main FASTRAD entities, parameterized tasks, deal with custom file format, etc. This service gives you also the keys to the most efficient Monte Carlo calculation: Both Forward and Reverse Monte Carlo calculation are available. The Monte Carlo is based on actual physical interactions of particles with matter. It considers the material composition and the particle behavior allowing to get a higher level of accuracy. The calculation can be run on several threads (parallelization) to decrease the computation time. The two calculations, Forward and Reverse MC, can be launched by command line (batch file) with the definition of several computation parameters in optional argument (number of shots, output file, number of threads,etc.) for a given ‘.ray’ model.

The simple IC module allows the calculation of the current densities (in pA/cm²) between two points in a dielectric volume of a 3D model.

The advanced IC module allows the calculation of the incident electron current density (in pA/cm²) and the trapped volumic flux in a dielectric volume of a 3D model.

These calculations are based on the electron Reverse Monte Carlo algorithm. A Monte Carlo calculation estimates the incoming and outgoing electron current for selected detectors.

The difference between the two currents gives the electric current density created in the dielectric volume.

10